Driver Advisory System (DAS)-Embedded Smart Trains

Driver Advisory System (DAS)-Embedded Smart Trains

Across the globe, the marriage of technology and construction, combined with sustained urbanization and industrialization, has arguably led to various countries building efficient and effective modes of public transportation. In particular, light rail systems have received substantial investments from both public and private sectors, especially in second-tier and satellite cities, as they often require fewer costs and less time to launch services.

 

In designing and planning an at-grade light rail system infrastructure, transportation agencies need to contend with both natural and manmade obstacles, which are usually not major issues with underground systems. In particular, light rail vehicles often share surface streets with and must maintain safe distances from other forms of ground transportation and pedestrians. Agencies must also cope with existing crossroads as well as construct overpasses and underpasses. A quality transportation management system should additionally be comprehensive enough that it can be incorporated in other rail infrastructures and environments, so as to minimize each subsequent railway line’s startup and implementation costs. Furthermore, the system needs to be able to intelligently manage functions such as power monitoring and maintenance needs, thus saving money and downtime.

 

Though technology has progressed adequately to support completely automated metro system infrastructure, at-grade light rail is not ready just yet. Burkhard Stadlman, Austrian professor and researcher on automated trains, points out:

 

…On regular train lines, where, for example, you have road crossings and no fences along the track, we’re nowhere near operating driverless trains…They need very good obstacle detection and safety systems need to be top-notch because they ride around in all kinds of weather conditions [1].

 

Therefore, safety dictates that a train should have a conductor onboard to operate the train and monitor conditions until automation is proven to be completely risk-free for passengers and the external environment. In 2020, NEXCOM’s Mobile Computing Solutions group will contribute such technology to several railway projects in Australia and China by incorporating AI capabilities into their transportation systems, all in the hopes of enhancing public safety and autonomous technology.

 

System requirements: what does a comprehensive transportation management system need?

The conductor needs to have a safe, effective, and up-to-date transportation management system in order to move passengers safely between destinations. This system should ideally consist of four crucial components: an AI-enabled computing platform, communication network, first-rate video capture equipment, and connected driver advisory system (C-DAS). Using an analogy of the human body system, think of the computing platform as the body itself, the communication network as the mouth, the video capture equipment as the eyes, and C-DAS as the “soul” of the body.

 

The computing platform is the most integral piece of the transportation management system puzzle, serving as the core to all of the other moving pieces and performing complex analysis. Video capture and LIDAR work in tandem with the platform’s computer vision and AI capabilities to distinguish between various foreign objects, such as vehicles, pedestrians, and traffic signals. More specifically, 4k cameras capture high-quality video, while LIDAR sensors measure distances by using light in pulsed laser form. Furthermore, a reliable and lightning-speed communication network transmits data to and from the control center and rail driver, as well as uploads to the cloud for documentation and deep analysis purposes.

 

Finally, housed on the computing platform and using information provided by the communication network and video/LIDAR components, C-DAS observes roadway situations, identifies risks, and avoids accidents by instantly issuing warnings and alerts to the conductor/driver and centralized control center. Being “connected” with the entire light rail network, C-DAS operates in conjunction with the rail network’s traffic management system (TMS), which controls routing, timing, and movement of vehicles across the network, to guide each driver in operating not only safely but efficiently, avoiding unnecessary stops, conserving energy, reducing wear-and-tear, and avoiding accidents and operational incidents [2].

 

 

Light Rail Connected Driver Advisory System (C-DAS)

 

 

The answer is here: the light rail C-DAS, based on NEXCOM’s ATC 8010-7DF

In light of all of the aforementioned concerns, NEXCOM has introduced the ATC 8010-7DF, a top-of-the-line, AI-enhanced computing platform, to system integrators in some of the world’s most populous cities. The platform effortlessly combines with third-party hardware and software, as well as C-DAS, to update inadequate light rail systems with ones that are reliable and safe, technologically advanced, and fully integrated. Highlighted by its advanced AI analytics potential, the ATC 8010-7DF guarantees unsurpassed graphic performance with the onboard NVIDIA GTX 1080 MXM GPU, which easily handles real-time AI vision. The platform’s compact size means that it’s a perfect fit for smaller spaces and easily upgradeable. Amidst the light rail network’s complex traffic needs, it’s also able to clearly distinguish among various vehicles and foreign objects, as well as judge their distances relative to the train itself.

 

Not only is the ATC 8010-7DF tested against vibration and shock to MIL-STD-810G standards, it also operates at extended temperatures of -30° to 60°C, making it suitable for harsh environments. We additionally provide eight PoE 802.3 af/at ports with optional M12 connections to preempt the inevitable vibration issues on railways. The PoE ports supply power and connectivity for 4k PoE cameras, to record and immediately relay high-resolution video, and LIDAR, to monitor distances between the light rail vehicle and other objects. These devices all support the C-DAS, which combines this data with AI image analysis and recognition technology, to identify and warn about risks within 300 meters of the railway, including persons, vehicles, and objects. The conductor is then able to control vehicular speeds and maintain safety.

 

The advanced telematics computer, based on Intel’s 9th Generation Core CPUs, ensures expedient data processing. With two external SSDs that are configured for RAID 0, 1, 5, and 10, plus two mSATA drives, NEXCOM guarantees that essential data is protected and storage is ample. In today’s world, as legacy equipment becomes outdated and needs immediate replacement, on top of rapidly increasing data transmission speeds, users have peace of mind in knowing that our onboard WWAN modules arrive 5G-ready and GPS-enabled to swiftly upload to railway systems’ intelligent control centers for analysis and assistance with road condition monitoring. The control center is then able to effortlessly control traffic at intersections, mainline turnouts, and depots.

 

Conclusion: the successes of light rail means that it’s here to stay

Light rail infrastructure has become a popular, environmentally-friendly remedy for urban transportation issues. Introducing the state-of the-art AI and object recognition capabilities of NEXCOM’s ATC 8010-7DF into such infrastructure has been proven to improve overall safety and accuracy. The 5G-enabled WWAN modules, combined with third-party high-resolution PoE cameras and LIDAR, easily connect with the ATC 8010-7DF to provide a fully integrated, intelligent C-DAS. This system, when added to light rail infrastructure, allows governments to quickly build low-cost railways in emerging cities, striking a proper balance between speed and safety. Light rail systems also boost overall transportation capacity and utilize exclusive right-of-ways to increase passenger numbers, without the adverse consequence of compounding vehicular traffic.

 

NEXCOM is dedicated to revolutionizing the smart transportation industry with solutions that are cutting-edge, yet safe and secure. In meeting customer needs across the transportation industry, NEXCOM provides a wide range of AI-enabled transportation management solutions. For more information, please contact the Mobile Computing Solutions group.

 

 

NEXCOM’s Industrial AI Edge Computer Solutions

 

NEXCOM’s Industrial AI Edge Computer Solutions

 

 

References

[1] T. Cassauwers. “Driverless trains are coming, but what about the workers?” Equal Times. https://www.equaltimes.org/driverless-trains-are-coming-but#.Xs3hAUBuLIW (accessed May 27, 2020).

[2] K. Barrow. “C-DAS: taking driver advisory systems to the next level.” International Railway Journal. https://www.railjournal.com/in_depth/c-das-taking-driver-advisory-systems-to-the-next-level (accessed June 9, 2020).

 

 

Intel IoT Solution Alliance

More News

card title
2025/01/16
Case Studies
NEXCOM

Innovative Embedded Fanless Computer Transforms Dairy Farming

The dairy farming industry faces significant challenges in managing livestock and optimizing farm operations. A major hurdle is accurate cow monitoring, complicating precise record-keeping of identification, health status, milk yield, and food biosecurity. Current data collection and analysis rely on manual methods, hindering timely tracking and data-driven decision making. Lack of real-time data and insights leads to potential wastage and negatively impacts cow welfare and productivity. Addressing these challenges demands an innovative solution, and IoT gateway represents a promising approach for such advancements in the industry. NEXCOM’s NDiS B560S, a slim, embedded fanless computer offers a comprehensive smart farming solution. It integrates with electronic and visual cow tags to enable accurate monitoring, automated data collection, nutrition analysis, and optimized resource allocation.   Powered by the Intel® Core™ i5-8500T processor, the NDiS B560S embedded fanless computer provides seamless connectivity, effectively enhancing cow health and performance through accurate identification and tracking of individual cows. The system facilitates real-time data access on breeding records, health metrics, and milk production, arming operators with vital information to make informed decisions on nutrition, reproduction strategies, and necessary veterinary interventions for smart farming.   The IoT gateway also accomodates temperature and humidity sensors via M.2 2230 Key E, enabling anticipatory monitoring of environmental conditions, thus mitigating risks associated with heat stress and other potential adverse effects on cow health. With integrating LAN and Wi-Fi capabilities, along with an intuitive touch HMI interface, it permits farm operators to remotely oversee and control various farm aspects. Operators can access real-time data from RFID tags, receive immediate alerts, and make informed decisions from anywhere, significantly boosting efficiency and flexibility.   Leveraging the innovative NDiS B560S embedded fanless computer and cow tags, dairy farms can revolutionize operations, authenticate livestock data, and eliminate human errors associated with traditional paper records. This advanced traceability solution improves food safety, regulatory efficiency, resource allocation, and more.   Diagram     Key Features for Application Needs   Support 8/9th Gen Intel® Core™ i3/i5/i7 LGA socket type embedded processor, up to 35W Intel® H310 Intel® integrated UHD 630 graphic engine Support 2 independent 4K2K 60Hz display output Compact and slim design (H: 39mm) Support 1 x 2.5” SATA HDD 2 x HDMI 2.0, 4 x USB 3.0, 2 x USB 2.0, 2 x GbE LAN, 4 x COM, 1 x Line-out, 1 x Mic-in Support M.2 Key B/E/M Fanless design
card title
2024/12/30
Case Studies
NEXCOM

Smarter Highways Ahead: Empowering ETC Systems with Neu-X302-Q and NDiS B561-PoE for Real-Time Tolling and Vehicle Monitoring

The Background The highway electronic toll collection (ETC) is an important part of modern transportation and can effectively improve vehicle traffic efficiency. The advanced ETC system, combined with real-time vehicle identification and blacklist monitoring functions, assists the police in tracking down vehicle theft and other illegal activities. The solution combines powerful edge computing, high-speed data processing and reliable device connectivity to ensure seamless operation under harsh highway conditions.   Solution Overview The ETC system was built using Neu-X302-Q as the main computing device and NDiS B561-PoE to control the ETC gate and also capture the images through PoE camera. These devices collaborated to deliver robust, real-time data analysis, enabling effective toll management and monitoring.   Neu-X302-Q The Neu-X302-Q served as the main computing platform for processing vehicle data, running blacklist comparisons, and triggering alerts for unauthorized vehicles. Its fanless design, Intel® 8th/9th Core™ processor, and high I/O expandability made it ideal for 24/7 operation in harsh roadside environments. The device handled large-scale data communication and ensured minimal latency, critical for real-time ETC operations.   NDiS B561-PoE The NDiS B561-PoE, powered by Intel® 12th Gen Intel® Core™ processor, not only to controls the ETC gate but also captures images of vehicles passing though ETC lane and immediately communicates with the Neu-X302-Q to process the data. Its advanced graphics support allowed seamless real-time visualization, and the PoE functionality significantly reduced wiring complexity by delivering both data and power through a single cable. Its rugged design ensured uninterrupted operations in extreme conditions.   Overall, the deployment of Neu-X302-Q and NDiS B561-PoE revolutionized the highway ETC system, enabling accurate, high-speed toll processing and offering better control over vehicles that attempt to evade tolls or engage in illegal activities. The Neu-X302-Q and NDiS B561-PoE industrial-grade computing devices can transform highway toll collection, paving the way for smarter and safer road infrastructures.   Application Diagram    
card title
2024/10/24
Case Studies
NEXCOM

Riverside Revolution: NEXCOM's Neu-X102-N50 Transforms Tourist Information

Along the bustling banks of the Thames in London, sleek digital totems now stand as silent guides for curious visitors. These modern sentinels display real-time boat schedules, weather updates, and a wealth of local information, transforming the riverside experience. At the heart of this smart city's evolution lies NEXCOM's powerful Neu-X102-N50, the driving force behind these innovative information hubs.   These innovative information totems are revolutionizing visitor experiences in waterfront destinations citywide. While their exteriors may vary to suit local aesthetics, their core remains constant: NEXCOM's powerful edge computing system, the Neu-X102-N50.   At the heart of these totems lies impressive technology tailored for outdoor applications. The Neu-X102-N50 boasts an Intel Alder Lake-N N50 processor and up to 16GB of RAM, ensuring smooth performance even in challenging environments. Its ability to operate in temperatures from -5°C to 50°C makes it suitable for diverse climates.   The Neu-X102-N50's technical prowess extends beyond its processor. With support for up to two HDMI ports for playing vivid content, it can deliver eye-catching visuals to attract and inform visitors. Its M.2 & mPCIe slots allow for expandable storage, LTE & Wi-Fi 6 capability, ensuring ample space for rich content and lightning-fast wireless connectivity. These features enable the totems to serve as comprehensive information hubs, capable of handling high-traffic areas with ease in the smart city.   Tourists interact with vibrant 32-inch touchscreen displays, accessing a wealth of information beyond just schedules and weather. Local attractions, dining recommendations, and even real-time air quality data are at their fingertips. The edge computing system's dual 2.5GbE LAN ports and 4G LTE connectivity ensure that this information is always current and readily available. Through a USB light sensor and COM port, the totem can automatically adjust its brightness, ensuring all information remains readable in varying light conditions while contributing to the system's energy efficiency, aligning with modern urban sustainability goals.   For totem operators, remote management capability is key. They can update content and perform system maintenance through LAN or LTE, significantly reducing operational costs and ensuring efficient management.   These edge computing systems improve the visitor experience and provide valuable data insights for urban planning and tourism management. Through cameras connected via USB 3.2 high-bandwidth ports, the Neu-X102-N50 ensures smooth capture and transmission of data, enabling real-time monitoring and analysis of visitor flows. This advanced capability allows city planners and tourism officials to make informed decisions, optimize resource allocation, and enhance overall urban mobility, while maintaining a seamless and enjoyable experience for tourists and locals alike.   The Neu-X102-N50 represents a significant step forward in smart city technology, blending seamlessly into urban landscapes while providing an essential service to tourists and locals alike. As more areas of the city adopt this technology, we can expect to see a transformation in how people interact with and navigate waterfront destinations, ushering in a new era of informed and engaged urban tourism.   Application Diagram